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Abstract. We study two coupled XY spin chains in the continuum limit with ferromagnetic
interaction both along and between the chains. We find 2π twist soliton solutions for the
difference in orientation angle of the spins along the chains. If we allow the chains to be elastic,
they will deform (move apart) in the region of the soliton in order to reduce magnetic energy.
The extent of deformation is a result of a balance between the gain in magnetic energy and
elastic energy cost. We also generalize these results to the case of a soliton lattice.

The interaction between two neighbouring spin chains is important in determining the
physical properties of a material, e.g. CuO chains in high temperature superconductors or
quasi-one-dimensional magnetic materials under pressure. Here we consider two coupled
XY spin chains [1] at a distanced from each other. The XY plane is perpendicular to the
chain direction,z. The interaction between the spins along, as well as between, the chains,
is ferromagnetic. The Hamiltonian is given by the following expression:
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where S(1)i and S(2)i denote spin in chains 1 and 2, respectively.J0 and J (d) are the
interaction constants along and between the chains, respectively. We will assume that
Jd = C/d2, whereC is a constant. The actual form ofJd as a function ofd is not relevant
to the magnetoelastic effect discussed in this article.

BecauseS2 = 1, we will use the angle representation for each spin which takes into
account the normalization conditionSi = (cosθi, sinθi). Now we can take the continuum
limit in equation (1) which leads to the following expression:
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]+ 2J (d) sin2 θ2− θ1
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Here θ1 = θ1(z), θ2 = θ2(z) and in the process of taking the continuum limit we have
omitted constant terms that merely renormalize the energy:S2
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The Euler–Lagrange equations forθ1 andθ2 are as follows:

J0

2

d2θ1

dz2
= −J (d) sin(θ2− θ1) (3a)

J0

2

d2θ2

dz2
= J (d) sin(θ2− θ1). (3b)
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Now we substract equation (3a) from (3b) and introduce the new variable1θ = θ2 − θ1.
We obtain the following sine–Gordon equation

d21θ

dz2
= 4

J (d)

J0
sin1θ (4)

which has a nontrivial 2π soliton solution

1θ(z) = 4 arctan [exp(− z
ξ
)] ξ = 1
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with 1θ(−∞) = 0 and1θ(+∞) = 2π . If we now add equations (3a) and (3b) we get the
following equation for the sum of the anglesθ1+ θ2:

d2

dz2
(θ1+ θ2) = 0 (6)

with the solutionθ1 + θ2 = C0z +D, whereD is a constant, and the boundary conditions
θ1(±∞) = θ2(±∞) =constant, which assure the convergence of the energy in (2) is satisfied
by C0 = 0.

Using equations (2) and (5), the total magnetic energy of the soliton is given by
E = 3J0/ξ . Each chain contributesJ0/ξ , as does the coupling between the chains.

At the centre of the soliton (i.e.1θ = π ), the contribution to the energy from the
interaction term is at a maximum and the total energy will be most sensitive to the interaction
constantJ (d) in this region. If we now allow the distance between the chains to vary, i.e.
d = d(z) and keep at the same time the boundary conditions fixed,d(−∞) = d(+∞) = d0,
the system will try to reduce its energy by moving the two chains further apart in the region
around the centre of the soliton (figure 1). This is rather natural because, as one might
predict, near the centre of the soliton,θ2− θ1 ' π and the system tries to reduce energy by
increasingd. This will cost elastic energy and the exact shape of the two spin chains will
depend on the balance between the magnetic and elastic energy. The full Hamiltonian of
the system has the form:

H = Hmagn +Helast
whereHelast has the form

Helast = 2κ
∫ (

dy

dz

)2

dz (7)

and y(z) is the distance of the distorted spin chain at a pointz from the original straight
line.

If we take as an ansatzy(z) = α sech(z/ξ) for the distortion of each chain we get
Helast = 4κα2/3ξ . Now we proceed to show that for distorted chains the gain in magnetic
energy more than compensates the cost of elastic energy. The magnetic energy of distorted
chains is given by

Hmagn = 3J0

ξ
− π α

d

J0

ξ
. (8)

In the above expression we have assumed thatα/d � 1. It suffices thatπ(α/d)(J0/ξ) >

(4κα2/3ξ) and deforming the chains will become energetically favourable. This can be
reached easily for soft elastic chains.

Next, we write down the periodic (soliton lattice) solution of equation (4) for appropriate
boundary conditions

1θL(z) = 2 arccos

[
sn

(
z

kξ
, k

)]
(9)
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Figure 1. (a) Two coupled XY spin chains with deformation in the region of a 2π twist soliton
in the difference angle(θ1−θ2). (b) Two coupled XY spin chains with deformation for a soliton
lattice in the difference angle(θ1 − θ2).

with the periodicity 4l = 4ξkK(k), wherek is the modulus of the Jacobian elliptic function
sn (sine amplitude), andK(k) is the complete elliptic integral of the first kind. In the limit
k→ 1, as limk→1K(k)→∞, the half period 2l tends to infinity and we recover the single
soliton solution of equation (5).

The total magnetic energy per soliton of the soliton lattice is given by

Hmagn = 3J0

kξ

(
E − 1

3
k′2K

)
(10a)

whereE(k) is the complete elliptic integral of the second kind. Each chain contributes
J0E/kξ to the magnetic energy whereas the coupling between the chains contributes
J0/kξ(E − k′2K). In the single soliton limit (k → 1), lattice solution (equation (9)) and
the lattice energy (equation (10a)) reduce to the results obtained above (equation (5) and
3J0/ξ ). Unlike the single soliton case, the contribution to the total energy from each chain
is greater than the coupling term because of soliton interaction. Asymptotically, when the
solitons are very far apart (l � ξ , k′ → 0), the interaction energy (in addition to the single
soliton energy) is

Hmagn = 3J0

ξ
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3
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2ξ

)
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)]
(10b)

with E = 3J0/ξ being the magnetic energy of a single soliton. The form of the repulsive
interaction indicates that the soliton lattice is stable only forl > 2ξ .

If we take as an ansatzy(z) = βcn(z/kξ, k) for the periodic distortion of each chain
we get

Helast = 4κβ2

3k3ξ
[k′2K + (2k2− 1)E]. (11)

In the limit k → 1 equation (11) reduces to the elastic energy of the single soliton (with
β → α). Again, we show that for periodically distorted chains, the gain in magnetic energy
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is more than the cost of elastic energy. The magnetic energy of periodically distorted chains
is

Hmagn = 3J0

kξ

(
E − 1

3
k′2K

)
− 2βJ0

dξk2
[kk′ + (2k2− 1) arcsink]. (12)

Here we have assumed thatβ/d � 1. Note that equation (12) reduces to equation (8) in
the limit k→ 1 (andβ → α). It suffices that

3kJ0[kk′ + (2k2− 1) arcsink] > 2κβd[k′2K + (2k2− 1)E]

and periodically deforming the chains will become energetically favourable. Again, this can
be reached easily for soft elastic chains.

Similar magnetoelastic effects have been predicted [2] in the context of Heisenberg
spins on the surface of a cylinder. However, in that study the cylinder shrinks in the region
of the soliton whereas in the present case the two chains move away in the region of the
soliton. Examples of one-dimensional magnets with XY spin chains include ferromagnetic
material CsNiF3 [3], antiferromagnetic materials CsCoCl3 [4] and TMMC [5]. A particular
example of coupled XY chains is the quasi-one-dimensional magnet Pr(C2H5SO4)3.9H2O
(or PrEtSO4) [6]. Neutron scattering, NMR, electron-spin-echo and optical absorption ex-
periments indeed provide evidence for magnetic solitons in these materials.

This work was supported in part by the US Department of Energy.

References

[1] Mikeska H J 1979J. Magn. Magn. Mater.13 253
——1981J. Appl. Phys.52 1950

[2] Dandoloff R, Villain-Guillot S, Saxena A and Bishop A R 1995Phys. Rev. Lett.74
Villain-Guillot S, Dandoloff R, Saxena A and Bishop A R 1995Phys. Rev.B 52 6712

[3] Kjems J K and Steiner M 1978Phys. Rev. Lett.41 1137
[4] Yoshizawa H, Hirakawa K, Satija S K and Shirane G 1981Phys. Rev.B 23 2298
[5] Boucher J P, Regnault L P, Rossat-Mignot J, Renard J P, Bouillot J and Stirling W G 1980Solid State

Commun.33 171
[6] Taylor D R and Zaremba E 1981Phys. Rev.B 23 3384


